
SECURITY CLASSIFICATION OF THIS PAGE (Wh.., Date EnI.,ed;

OEAD INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

* REPRT NUMBER '2 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Memorandum Report 5011 '1. 4 go 12__IL
4. TITLE (nd Sabfiffe) S. TYPE OF REPORT A PERIOD COVERED

Interim reportonactiug

START-UP OF A PULSED BEAM FREE ELECTRON nron a contug
NRL problem.

LASER (FEL) OSCILLATOR G. PERFORMING ORG REPORT NUMBER

7. AUTHOR(e )  
6. CONTRACT OR GRANT NUMBER(.)

P. Sprangle, C.M. Tang and Ira B. Bernstein*

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

A RtEA & WORK UNIT NUMBERS

Naval Research Laboratory
Washington, D.C. 20375 62301E; 47-0867-0-2

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency April 1, 1983
Arlington, VA 22209 13. NUMBER OF PAGES

15
14, MONITORIN G AGENCY NAME A ADORESSfIf diff.e.,Il frow, Coltrolling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS. DECL ASSI FICATION/DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of I abltfct entered In Block 20, If dlfferent Ito" Report)

It. SUPPLEMENTARY NOTES

*Present address: Yale University, New Haven, CT

This work was supported by DARPA under contract No. 3817.

It. KEY WORDS (Continue on toetoo slde fi neceecary dad Idenfily by block nmber)

Free electron laser Oscillator Start-up

20. ABSTRACT (Cotllnue on revese side Ii neCoary and Identify by block number)

> A one-dimensional linear analysis is presented of the start-up of an FEL oscillator.
The model treats electron beam pulses of arbitrary shape and many significant three
dimensional effects are included heuristically. A closed equation is derived for the en-
semble averaged electromagnetic energy density matrix which contains the spontaneous
emission as a source, and which represents the small gain per pass and losses via coeffi-
cient matrices. Numerical solutions are compared with the Stanford experimental results.

DD Io1 1473 EDITION OF I NOV 61 IS OBSOLETE
/N 0102-014-601 SECURITY CLASSIFICATION OF THIS PAGE (ftol Dae IIteed* k4

L'"



START-UP OF A PULSED BEAM FREE ELECTRON LASER (FEL) OSCILLATOR

A number of successful free electron laser oscillator experiments have

been reported.1- 4 Simple considerations concerning the spontaneous radiation

level indicated start-up times much shorter than those 
observed. 3'4

Therefore, since a number of experiments utilizing shorter electron beam

macropulses are being constructed or planned, there is concern that these

forthcoming experiments may not be able to achieve saturation. A quantitative

understanding of the basic process governing the growth of coherent stimulated

radiation from incoherent spontaneous emission is therefore highly

desirable. This is especially true since the device is very sensitive to

small changes in parameters. A quantitative understanding of the coherent

gain is available, but the analysis of the coupling to the incoherent emission

is incomplete. Here we outline a classical one-dimensional theory of the

start-up of the FEL oscillator in the cold, small signal regime. Certain

important three dimensional effects are incorporated heuristically by means of

filling factors. The statistical features of the problem lead to a

formulation in terms of an ensemble averaged energy density matrix c, a

diagonal element of which is proportional to the fraction of the

electromagnetic field energy in the associated Fourier component. This matrix

obeys a linear equation in which the inhomogeneous term represents the

ensemble average emission, and gain and loss appear in coefficient matrices.

The non-diagonal terms of c yield information on the cross correlations

between Fourier components.

Theories of the FEL5- 9 proceed from a continuum description of the

electron dynamics, either fluid equations or the Vlasov equation. A proper

description of the start-up of an FEL oscillator, however, must take into

account the fact the electrons are discrete and substantially uncorrelated,

since it is the acceleration radiation of individual electrons in the wiggler
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that provides the initial fields. The acceleration radiation is then

amplified by the collective gain mechanism associated with the continuum

description. Thus a statistical theory is required, couched in terms of

objects bilinear in the fluctuating quantities so that ensemble averages are

non-zero, even when the ensemble averages of the fluctuating current density

vanish.

The theory developed here is one-dimensional in space and treats the

electrons as governed by Maxwell's equations. The wiggler is approximated by

the vector potential Aw - Aw cos(kwz) e(z - L ) O(L0 + Lw- z) ex where

0(x) is the step function and Aw and kw= 2n/- w  are constants. The radiation

vector potential is written as

AR(z,t) an (t) sin kn z exp(iw nt) e x+ c.c., where k n= W n/c - nw/L, the

separation between the mirrors is L (see Fig 1), an(t) is taken to be slowly

varying in time, and the tangential component of the electric

field E - - c-13AR /t vanishes on the mirrors. In what follows we will assume

that IAI >> IARI. The current density driving AR can be written

as J(z,t) = J (z,t) + Jinc(Z~t) where J is the coherent current driving the

stimulated radiation (gain) and J is the incoherent current due to the

discrete nature of the electrons and is responsible for the spontaneous

radiation (shot noise). The coherent and incoherent current densities are

respectively given by J = - eV F c<n(zt)> and

Jinc= -i eJvwFinc[n(z,t) - <n(z,t)>] where v -c eAw(z)/y m c is the

wiggler velocity. The actual discrete electron density is n(z,t)

-b 6(z - Zj(t)) where ab is the transverse electron beam area and the
J

lateral distribution of electrons has been treated as uniform. Only axial

discreteness is included. The ensemble average over the initially

uncorrelated electrons is denoted by < >, hence <n(z,t)> is the continuum
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electron density and n(z,t) - <n(z,t)> represents the fluctuating part of the

density. The usual filling factor is FC  a b/a r , where ar is the transverse

area of the resonator radiation mode; Finc is the filling factor associated

with the incoherent radiation and is somewhat more involved. It can be shown

that Finc = Iw( + voz/0 - -2 is the characteristic

laser wavelength and fm is a loss factor due to the finite size of the mirror

located at z - L. The loss factor for the incoherent radiation is
[2y 1(1 +Y8 2 me

fm W2yrm/M +  ) where r m is the mirror radius. In computing fm we

have taken the incoherent radiation divergence angle to be m (1/y + W).

The equation of motion for the Jth electron is

ZJ - (Iel/Y0m0c) 2 (3/3z - c- 2v oz /at)(A(z) " AR(zt))z where the
z ;izicniinar

right hand side is the ponderomotive acceleration. The initia conditions are

z (tj) 0, and zt (t v oz.

The radiation vector potential obeys

(32/az2 - c-2a2/at2 - C- 2 v/at)AR- -4wc-1J, where v - wL/Q,

WL = 2c/X L is the characteristic upshifted frequency, voz = COoz is the

unperturbed axial pulse velocity, and Q is the quality factor of the

resonator.

These equations when linearized yield a set of coupled linear equations,

the homogeneous part of which describes the coherent phenomena, and the

inhomogeneous part (involving the fluctuation in the electron density)

represents the incoherent emission. The incoherent (spontaneous) emission

part of an satisfies <a n> - O.Thus in order to obtain non-trivial statisticaln!

information one defines the total radiation energy density matrix
*2 <}n2 sprprinlt

Ch(t) - knk <an(t) a* (t)>. Note that c- 2 <I&nI > is proportional to

the ensemble average energy density in the nth Fourier component, and c is

related to the correlation of the nth and nth Fourier components of the

mm m m m m, I I [ I L I1 , i, , , , , ,I I- 3



electric field. These statistical quantities are measurable. It may be shown

after considerable calculation that when the gain per pass is small

L c) + (1 - ' C(tN) + G (t H ((tN + r+( T)G 2t N 'T -:(N)+ (tN) NIT +(tt
C

(1)

where the matrix G enbodies the coherent response, represents the

spontaneous emission, tN is the time the Nth electron pulse entered the

wiggler and H denotes the Hermitian conjugate. Indeed the trace of S is

proportional to the total spontaneous energy radiated by one pulse of

electrons in traversing the wiggler. The elements of the gain matrix and the

source matrix at time tN + T are given by

2 2

-i Lb Wb V w 2in(n-m)(N-l) 6L/L
Gr iN@ T  32 L y 0 2  w c  nmpnmgnm

+0 L b I2el2novw2F inc 211r(n-m)(N-l)6L/L
nm N 2L Lab  nm nm nm

where

T 3 ix n x ' i(x n ) sin(x- xm) 21xg (T) e- (I +-) sinxn - eX n x m x

nh (T) -i- (in(x + ) si inm - si (n )x x'

xX n n m

nm (  x n xnsnxc x nx -xmn)nm

- i(sinxn coax - sinxm cosx - sin¢x n - x) cos<x n - )}

...........................................................



a exp(-i(kn - k )(1-0 )0- L x [v k - ck (I - V /C)]r/2,
nm n 3 0 00 nm ozV f n oz

4 -((kn - km) -b /4)2

2 e . for Gaussian electron pulse profile

Pnm sin (kn -km)tb/2

(kn -k ) b /2 , for square shaped electron pulse profile,

2 2
vo /c w * 4we n /m and 6L - L - L /200. The matrices c and S are0O 0oC b 0 4e / 0  b

Hermitian.

Equation (1) has been integrated numerically to obtain c. The parameters

employed in the numerical studies are given in Table I, corresponding to the

Stanford experiment.4  Figure 2 shows the peak radiation power within the

resonator as a function of the number of beam pulses that have traversed the

resonator for various values of resonator length mismatch 6L - L - L b/28o .

Figure 3 shows the asymptotic gain as a function of 6L. The mirror

-3
mismatch 6L - - 1.1 x 10 cm corresponds to maximum gain but not maximum

saturated power. Maximum saturated power occurs for 6L between 0 and -1.1 x

10-3 cm. The range in 6L for nonzero gain is - 3.0 x 10. 3 cm< 6L < 0, in fair

agreement with the experimental range of 2.5 x 10-  cm. The maximum

calculated multi-mode (finite beam pulse) energy gain is 0.16 whereas the

single mode (continuous beam) yields a value of 0.25. Finite beam pulse

effects therefore reduce the linear gain by approximately 60%. The maximum

observed gain is 0.10.

Figure 4 shows the spatial distribution of the electron pulses (square)

and the radiation power pulse at the entrance and exit of the wiggler

for 6L - - 1.0 x 10. 3 cm. Upon entering the wiggler the radiation pulse

slightly lags the beam pulse, while at the exit of the wiggler the two are

completely overlapped. Figure 5 shows the energy spectrum of the radiation
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pulse after 100 beam pulses. The spontaneous radiation energy spectrum is

also shown for reference purposes.

Equation (4) suggests that one can roughly compute the relationship

between PN' the peak power in the resonator after the Nth pulse, to P , the

power emitted spontaneously, by assuming a constant average gain per pass g.

An elementary calculation yields when N >> I and g << 1, PN/Po = N - I +

(1 + g)N = N + exp (gN). Clearly when gN >> 1 the result is very sensitive to

small changes in g and N. If one takes the experimental values corresponding

to the maximum observed final power of PN - 2.7 x 107 W within the resonator,

N - 540 and the computed spontaneous power of P W 6.5 x 10- 2 W, one finds

that g - 0.037. The experimental value of the linear gain is 0.067. In view

of the sensitivity to changes in N and g the results are not inconsistent.

Moreover this effective value of g is smaller than the linear gain predicted

by the present model which is reasonable since non-linear effects and initial

beam thermal effects must lower the gain. Unfortunately the currently

available data is inadequate to make other detailed comparisons with this

small-signal theory.

Our analysis immediately suggest possible ways to substantially shorten

the oscillator start-up time while maintaining high saturated power levels.

The first approach takes advantage of the fact that the maximum linear gain

and maximum saturated power occur for different values of 6L, which we will

respectively denote by 6L1 and 6L 2. By slightly increasing the frequency of

the R.F. accelerating field, Wacc during the start-up period, i.e.,

decreasing the beam pulse separation, the value of 5L, could be varied from an

initial value of 6L1 to the value of 6L2, thus, decreasing the start-up time

while maintaining high final power levels. The required fractional increase

in Wacc is 16L 1- 6L2 1/Lbow 10- 6 for the parameters of ref. (3,4). The same
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effect may also be realized by simply changing (increasing) the mirror

separation during the start-up period. Another possible method of decreasing

the start-up time would be to simply increase that part of Finc associated

with mirror losses, i.e., increase fm. This could be accomplished by

increasing the effective size of the mirror located at z - L. The additional

extension of the mirror would necessarily have a different curvature. This

last approach should make it possible to contain a far larger portion of the

incoherent radiation.
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Table I

Beam Parameters

Beam Energy, (Yo - 1)m C2  43 MeV

Total Gamma, Yo 85

Axial Gamma, Yoz 69

Peak Current, I 1.3 Ap

Pulse Width, Lb 0.75 mm

Pulse Separation, Lb 25.4 m

Beam Radius, rb 0.25 mm

Wiggler Parameters

Wavelength, I 3.3 cmV

Amplitude (helical), B 2.3 kGV

Length, Lw  5.3 m

Resonator and Radiation

Resonator Length, L 12.7 m

Resonator Losses (round trip) 1.5Z

Radiation Wavelength, XL 3.3 um

Spot Size, r 0.167 cm

Beam Filling Factor, F 0.017C

Incoh. Rad. Loss Factor, fm 0.05
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RADIATION PULSE
AT t tN + L w/Vzo

RADIATIONW Z
Co PULSE

AT t tNZN

> ELECTRON
r- BEAM PULSE

_1 I

0.

zI
0

L

0

4I

AXIAL DISTANCE RELATIVE TO THE ELECTRON PULSE

Fig. 4 Radiation pulse power relative to the spatial distribution of the

electron pulse (square) at the entrance of the wiggler (t - tN) and

exit of wiggler (t tN+ Lw/vzo), where N > 1 denotes the electron

pulse number.
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STIMULATED RADIATION SPECTRUM

'flSPONTANEOUS

RADIATION

SPECTRUM

wl-

w

wz

-v 0

[kwVoz-ck( -floz)] Lw/2 Voz

Fig. 5 Asymptotic energy spectrum of the radiation pulse.
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